N8§8-17215

TUTORING ELECTRONIC TROUBLESHOOTING IN A
SIMULATED MAINTENANCE WORK ENVIRONMENT

Sherrie P. Gott, PhD
Air Force Human Resources Laboratory
Manpower and Personnel Division
Brooks AFB TX 78235-5601

ABSTRACT

Expert performances on authentic technical
problems such as electronic fault isolation are
being captured in "real time" to provide the
basis for a new generation of Air Force training
systems. Experts (and novices) in dozens of
maintenance jobs in electronic and
electro-mechanical domains are being studied
with a hybrid knowledge engineering-cognitive
task analysis methodology. A primary goal is to
establish what humans really need to know and
how they use their knowledge when they problem
solve in complex workcenters that are saturated
with "smart" machines. The cornerstone of the
method is an expert problem solving dyad. One
expert poses a problem and simulates equipment
responses to a second expert who attempts to
jsolate the fault conceived by the first

expert. Engineering expert knowledge in this
fashion situates skill in the actual probliem
context and thus highlights the conditionalized
character of expert knowledge. This is in
contrast to representation techniques that yield
decontextualized (and perhaps ncnessential)
declarative knowledge through interrogation of a
single expert. A series of intelligent tutoring
systems--or intelligent maintenance
simulators--is being developed based on expert
and novice problem solving data of this type.
The training systems rest on the same
problem-based cornerstone. A graded series of
authentic troubleshooting problems provides the
curriculum, and adaptive instructional
treatments foster active learning in trainees
who engage in extensive fault isolation practice
and thus in conditionalizing what they know. A
proof of concept training study involving human
tutoring was conducted as a precursor to the
computer tutors to assess this integrated,
problem-based approach to task analysis and
instruction. Statistically significant
improvements in apprentice technicians'
troubleshooting efficiency were achieved after
approximately six hours of training.

INTRODUCTION

Both military and industrial work environments
have grown steadily in complexity in recent
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decades as technologies, particularly
electronics related, have advanced at staggering
rates. Today's workers find themselves in
contexts where interacting with complex machines
is the rule. And yet, the nature of intelligent
performance in such machine interactions is not
well understood. In addition, beliefs that
cognitive demands on humans have diminished with
the proliferation of so-called smart machines
have diverted attention away from the human
capabilities that are important for a high-tech
workforce. Yet, it now seems clear that for the
foreseeable future, machine diagnostic
capabilities have definite 1imits. These limits
in turn place a premium on the human expertise
that is needed to pick up where the machines
leave off. For example, the hit rate for some
built-in diagnostics for the BIB is only 65
percent. Even with today's widely used
maintenance aiding machines (many having expert
system features), the ratio of maintenance hours
to flying hours for the F~15 aircraft is 50:1
(Atkinson & Hiatt, 1985). In more general terms
it has been estimated that as much as 90 percent
of the life-cycle cost of a defense hardware
system is the cost of maintaining it.

A large-scale research program is underway at
the Air Force Human Resources lLaboratory in
direct response to this problem. The goals are
to develop methods for representing human
expertise on complex technical tasks so that
training systems capable of meeting the demands
of high-tech workcenters can be realized.

THE ENGINEERING OF CONDITIONALIZED KNOWLEDGE

The knowledge engineering approach in the Air
Force Basic Job Skills (BJS) Research Program
involves "real-time" problem solving, multiple
stages and types of knowledge engineering
inquiry, and a number of formats for knowledge
representation. A framework has been adapted
from knowledge engineering work in medical
diagnosis to represent the mental events of
troubleshooting as conditionatized knowledge
(Clancey, 1985). In this framework, actions of
the problem solver are recorded as discrete
operations or procedures, e.g., tracing
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schematics or measuring voltage. In addition,
reasons or precursors for the actions are
expressed as the goals or intents of the problem
solver, and the interpretations of outcomes
resulting from the actions are recorded as
well. Finally, block diagram-like sketches of
the equipment parts that are affected by the
outcomes and actions are generated by the
technician to illustrate the series of steps.
Sequences of mental events such as these are
called PARI structures (Precursor [to Action] -
Action - Result - Interpretation). An example
of PARI data for a single action node is shown
in Table I.

Notice in this PARI example that the Action
element is a familiar troubleshooting procedure,
namely, taking a voltage measurement with a
multimeter. The representational formalism of
the PARI framework does more than reveal that a
technician needs to know how to take a voltage
measurement, however. What is also captured are
the conditions that surround such a measurement
operation, including the reasons behind the
action (..."to see if the signal is good up to
test package cable") and the interpretation of
an expected voltage level (..."tells me...that
part of stimulus path [upstream] is good"). In
effect, the vital strategic processes of
troubleshooting are made explicit with this
representation scheme. The plan that produced
the measurement operation becomes known. The
technician's plan is to constrain the problem
space by eliminating either the stimulus or
measurement (return) portion of the signal

path. It is precisely this kind of strategic
skill that too often goes “"untaught" in
electronics training, in much the same way that
strategic knowledge is frequently ignored in the
teaching of mathematics (Greeno, 1978). When
problem solving performances are captured in
real time, it becomes possible to engineer
strategic knowledge for input to instructional
systems along with the more standard declarative
knowledge. In this manner a skill such as
taking a voltage reading is represented in terms
of its ties to the conditions of use, just as it
occurs in real world expert performances.

Representing skill components in this form
offers considerable power to instruction, given
that conditionalized knowledge is a recognized
hallmark of expertise. Conversely, novices
often display fragmented, unprincipled behavior
that suggests weakness in the proceduralizing
(or conditionalizing) of their skill
components. In the present example, novices may
know how to use a muitimeter to take a voltage
reading but often do not produce that action
under the appropriate conditions. If produced,
they often have difficulty interpreting the
results of the action.

KNOWLEDGE ENGINEERING RESULTS

Approximately 15 technical experts and 200
less-than-expert technicians in four related AF
electronics specialties have participated to
date in knowledge engineering studies similar to
those described above as part of the Basic Job

62

Skills Research Program. On the basis of these
studies, a meaningful superstructure for
organizing troubleshooting performance data has
been developed. It consists of three
components, one of which is strategic knowledge
as previewed above. The three interacting
components are (1) system knowledge or the
equipment device models experts use in problem
solving (e.g., system knowledge regarding the
stimulus or measurement functionalities of the
equipment); (2) troubleshooting procedures or
operations performed on the system; and (3)
strategic knowledge, which includes {a)
strategic decision factors that involve fault
probabilities and efficiency estimates and (b) a
top-level plan or strategy that is responsible
for the orchestration of skill components in
task execution. The orchestration occurs as the
Strategy component, which sits on top of the
Procedures and System Knowledge components,
deploys pieces of knowledge and procedural
subroutines as needed and as driven by the
decision factors {(Figure 1).

The System Knowledge component of the
architecture deserves special attention for
several reasons. First, it provides the
dominant organizing principle for this cognitive
skills architecture. It is the foundation to
which the companion Procedures component in
Figure 1 is attached. According to this view, a
measurement or swapping operation is attached to
a device model representat1on, since the purpose
of the operat1on is viewed as adjusting the
technician's present model of the device with
new know]edge of faulty components. This

“attachment” is part of the conditionalized
character of expert knowledge. System Knowledge
also feeds the strategic decision factors that
underlie the Strategy component, since these
factors involve system fault probabilities and
efficiency estimates associated with operations
on the system, e.g., it is judged time efficient
by experts to run self diagnostics on some
pieces of equipment but not others. Finally,
System Knowledge influences the goal structure
of the Strategy component in the sense that
certain areas of the equipment are targeted
before others {again due to fault probabilities
and efficiency considerations).

The second reason why System Knowledge merits
special attention here is because the curriculum
content for the intelligent tutor described in
the next section is directly influenced by the
different system perspectives of expert
troubleshooters. In the course of the knowledge
engineering studies conducted to date in the BJS
project, it has become clear that experts’
decision making during troubleshooting is
partially driven by system schemas. The schemas
represent a set of system-related questions that
experts entertain at various stages in the fault
isolation process {Collins, 1987). They include
the following:

-Is the system fail a glitch, an intermittent
fail, or a hard fail?

-In which large functional area of the
equipment--i.e., Line Replaceable Unit (LRU),



Test Package, or Test Station--is the fault
Tocated?

-Is the problem a power-related fail?

-Is the problem a stimulus or measurement
problem?

-Is the problem a signal or data flow problem?
-Do the symptoms indicate the fault is in a
device or in the connections between devices?

These questions can be viewed as the major
parses the expert makes of the fault isolation
space in which he/she works. Three of these
parses have provided the framework for the
troubleshooting problems that comprise the
instructional content for the avionics
intelligent tutor to be described next.

A SIMULATED MAINTENANCE WORK ENVIRONMENT

An intelligent maintenance practice environment
for F15 integrated avionics technicians has been
developed by researchers at the University of
Pittsburgh's Learning R&D Center in
collaboration with AF technical experts
(Lesgold, 1987). The tutor is based on results
from cognitive analyses of expert and novice AF
technicians using the knowledge engineering
methods referenced above. The analyses have
provided three general types of input to the
intelligent tutoring system: detailed
characterizations of expert performance which
are the targets for instruction (expressed in
terms of the cognitive skills architecture of
Figure 1); a framework for the design of the
troubleshooting curriculum based on three parses
experts make of the problem space in this
domain; and guidelines for the instructional
treatment based on expert-novice differences as
well as on present impediments to apprenticeship
learning in the workplace.

Expert Parses

Two central system schemas that experts activate
as they navigate and parse problem spaces in
this domain have provided the design framework
for the maintenance tutor's problem set. These
schemas represent two system perspectives
experts' invoke, depending upon the conditions
of the problem. The first concerns the major
functionalities of the equipment, namely,
stimulus and measurement functions. Recall that
in the example reported in Table I the expert
both explains his action and interprets the
system's response to the action in terms of the
stimulus portion of the equipment. More
specifically, the procedure (action) used allows
him/her to achieve the goal of verifying that a
major functional area of the equipment is
operating properly.

The stimulus-measurement functionalities of this
equipment are illustrated in Figure 2. This is
an abstracted characterization of the system's
signal path. As shown, the signal originates in
the stimulus drawer of an avionics test station,
travels through the station's switching drawer
(S/C) which performs signal switching functions,
and through an interface test package to an
aircraft 1ine replaceable unit (LRU} which is
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being tested for a malfunction. It returns
through the interface package to a measurement
source in the test station.

Problems in the tutor curriculum represent
faults at varying levels of difficulty in the
stimulus and measurement routing of the
equipment. Trainees will have modeled for them
how an expert uses this perspective to isolate
various faults. They will then have extensive
opportunities to solve problems--with the
assistance of a hint-giving coach--so that
system functionality knowledge is tied to
problem solving conditions. This kind of
learning environment is in contrast to
instruction where system knowledge would be
taught as declarative facts detached from the
conditions of use, or where measurement
procedures would be taught in isolation from the
system and the fault isolation context.

Results of our knowledge engineering work plus
input from the dominant theory of skill
acquisition in psychology today (Anderson, 1982)
have shaped this instructional approach. First,
our results have indicated that a principal form
of the conditionalized knowledge of experts in
this domain is the coupling of conceptual system
knowledge (e.g., the stimulus-measurement
functionality) with procedural and strategic
components. This results in experts'
investigating their equipment with specific
intents and particularized procedures. In other
words their system knowledge is not detached and
inert, but rather is tightly interwoven with
problem solving actions that are produced by
strategic plans in response to certain
malfunction conditions. Presently, in the Air
Force this form of conditionalized knowledge
results only after many years of experience, as
would be predicted by Anderson's theory. A
principal goal of the BJS maintenance tutor is
to speed up that conditionalizing process.

The second system perspective or schema used to
shape the tutor's problem set is signal flow vs
data flow. Experts also view the equipment (and
thus represent faults) in terms of these two
interrelated system properties. In short, this
schema involves knowledge that both an
electronic signal and instructions (control
data) to the equipment for handling the signal
move through the system. Faults can occur with
respect to either property. Accordingly, signal
flow and control data flow problems are
incorporated in the tutor at varying levels of
difficulty.

Finally, a third schema, namely, the macro level
functional representation of the equipment (LRU
vs Test Package vs Test Station) has guided
problem development. This schema is integrally
tied to experts' strategic planning knowledge in
the sense that they typically plan their moves
through the problem space so that they system-
atically rule out the LRU before moving their
focus to either the Test Package or Test Sta-
tion. Trainees will make decisions within the
tutor environment to pursue either an LRU Plan,
a Test Package Plan, or a Test Station Plan.



In summary, the development of the Air Force
avionics tutor illustrates that knowledge
engineering can usefully feed instructional
design as well as provide the more standard type
of input, i.e., the expert knowledge base.
Further, dynamic, problem-based knowledge
engineering allows for the representation of
conditionalized knowledge so that the most
critical stage of skill acquisition can be
targeted by instruction. That is the stage at
which knowledge becomes tied to conditions of
use. The avionics maintenance tutoring system
based on this approach will be discussed in more
detail in the next section.

An Al Instructional Application.

The BJS tutoring system that has resulted from
the expert dyad approach to knowledge
engineering is an interesting Al application in
the sense that it embodies minimally deep
intelligence. It avoids complete qualitative
physics of the work environment as well as a
complete computer representation of expertise
(Lesgold, 1987). In short, there is neither a
fully articulate expert nor a runnable equipment
simulation. Later tutors in the BJS series will
have these features; however, this initial
system is of special interest in its own right.
Its development is much less resource intensive
than that of deep intelligence tutors, and it
has received an enthusiastic reception from
technical experts at the three operational sites
where it will soon be tested. If the evaluation
results reveal troubleshooting performance gains
in accordance with the predictions of field
personnel, this form of intelligent tutoring
system represents a quite feasible prototype
that can immediately generalize to other
troubleshooting domains.

A rigorous evaluation study will accompany the
intervention in order to formally assess its
effectiveness. A controlled experiment will
permit the determination of how much on-the-job
experience is replaced by the 30 to 50 hours of
tutor instruction. In addition, performance of
individual technicians and the shop-level
productivity of the three F15 workcenters will
be tracked longitudinally to ascertain the
long-term impact of the instruction.

As a precursor to this series of BJS intelligent
tutoring systems, a training study involving a
human tutor (versus a computer coach) was
conducted in a related F15 integrated avionics
domain. One goal was to test the concept of
basing instruction on representations of
conditionalized expert knowledge. The treatment
involved the posing of authentic troubleshooting
problems similar to those generated in a BJS
knowledge engineering study as described above.
The expert-like skills targeted for enhancement
were particular instantiations of the cognitive
skills architecture (Figure 1). The system
knowledge of interest was the abstracted signal
path shown in Figure 2, plus several layers of
elaborated system knowledge. The procedures of
interest were three methods for investigating
the equipment that ranged from rudimentary to
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advanced:

(1) swapping equipment components

(2) using self-diagnostics to test system
integrity

(3) measuring device and circuit functionality.

Increasingly complex system and strategic
knowledge are associated with increasingly
sophisticated methods.

During three to five hours of individual
instruction over a period of three days, seven
technicians were tutored. They were presented a
troubleshooting scenario and then probed
regarding what they would do to isolate the
fault (Actions), why they would take the
particular action (Precursors), and what the
outcome (Result) of the action meant to them
{Interpretation). In effect, technicians were
instructed to generate PARI records (see Table
1) including the associated device model
sketches. The human tutor gave feedback to
their stated Precursors, Actions, and
Interpretations in the form of hints intended to
move them toward more expert-like performances.

To evaluate their learning, they were given both
an end-of-training problem-based test as well as
a delayed posttest after the weekend. The tests
were authentic troubleshooting scenarios
belonging to the same class and difficulty of
problems on which they had been tutored. Their
progress was scored both in terms of the
sufficiency of their operations--that is,
whether they sufficiently investigated all
suspect pieces of the equipment--and the
efficiency of their moves--that is, whether they
e??1c1entiy conserved time and equipment
resources.

Results showed statistically significant
improvements in both areas, with particularly
dramatic gains in efficiency. Mean scores are
plotted in Figure 3. The group's Sufficiency in
examining all suspect parts of the equipment
improved from a pretest mean value of 84

{range = 60 to 95) to a posttest mean of 100.
The dalayed posttest mean was also 100,
indicating the improvement was retained over the
weekend. The group's Efficiency in fault
isolation improved over twofold. The mean
pretest value was 37 (range = 24 to 52); the
initial posttest mean was 92 (range = 81 to
100); and the delayed posttest mean was 93
(range = 81 to 97).

Pedagogically, this human tutor training study
was based on the same instructional principles
that underpin the computer-based avionics
tutor. Technicians were afforded extensive
practice in fault-isolation; they were required
to articulate and focus on their reasons and
their interpretations of various troubleshooting
moves; they were aided by a human tutor who,
principally through Socratic dialogue,
challenged them to reflect on what they did in
tems of expert standards of thoroughness and
efficiency. The technicians later attributed
the gains they made to the opportunities they



had to practice fault isolation procedures
intensively and to solve problems
independently. They reported that recording and
reflecting on their actions and reasons was
helpful and that they profitted from the hints
and consistent feedback. This successful study
is viewed as empirical support for the
effectiveness of skill acquisition treatments
that focus on the conditionalizing of knowledge
in intelligent learning environments. External
support in the form of the PARI records and the
human tutor's feedback appeared to play a
central role in learning. Finally, the
instruction was realizable because of the
knowledge engineering input that revealed the
processes by which experts conditionalize what
they know.
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Table 1: PARI DATA
Precursor: Want to see if the stimulus signal is good up to test package cable
Action: Measure signal at J14-28 with multimeter

Result: 28 volts

Interpretation: This is expected reading; this tells me that the stimulus
is getting from the test station through the cable, so that
part of the stimulus path is good

TEST

ITA
STATION

J14-28
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